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Theoretical results on the heat transfer in combustion-product filtration in 
the rock-collapse zone behind a borehole-damaged coal bed are outlined. A 
sufficiently simple engineering solution of the problem is obtained by means 
of an equivalent heat-conduction equation, and the limiting temperatures cor- 
responding to different parameter values are analyzed. 

The thermodynamic efficiency with which the chemical energy of coal burnup is used in 
traditional methods of coal-gas production is low. The energy losses in the depths of the 
earth associated with heating of the coal bed running through the rock, evaporation of the 
water which is present, and leakage of the gas which forms amount to around 30%, and result 
in a low-efficiency of underground gas-generating stations: 50% on average. Recovery of 
the heat losses could significantly increase the efficiency of thermal utilization of the 
coal. 

Beginning in the 1970s, borehole processing of coal at deep levels has been developed 
at the Leningrad Mining Institute, in combination with the recovery of geothermal energy 
[1]. 

With some modifications, retaining the basic idea of coal combustion in underground 
conditions (supplying water where necessary), with subsequent or simultaneous recuperation 
of the physical heat stored in the collapsed area, this technology may be used for beds at 
any depth. 

In the complex system for the recovery of coal and geothermal reserves, certain char- 
acteristic zones may be distinguished in the set of complex structures of heat-transfer, 
chemical-conversion, and phase-transformation surfaces: the zone where there is practic- 
ally no chemical reaction; the combustion zone; the zone with heat transfer by the vapor- 
gas mixture in the gas-production channel, and the zone with collapsed rock. The basic 
losses of physical heat occur in the zone of collapse and stratification of the rock layer. 
The reaction products or, with water supply to the combustion zone, the vapor-Bas mixture 
moves along the gas-production channel and then through the collapsed-rock zone. The heat 
losses in the channel were estimated in [2]. The aim of the present work is to determine 
the gas temeprature on leaving the collapse zone, permitting the estimation of the heat 
losses in this zone; subsequent recovery of this heat significantly influences the economic 
and energy indices of system operation. 

For the heat-transfer zone, periodic collapse of the roof of the bed following the pass- 
age of the combustion front and the energy carrier is characteristic. The size of the blocks 
is sufficiently large, and therefore heat transfer occurs in a significantly heterogeneous 
medium. The description of heat transfer in permeable media was considered in [3, 4]. In 
contrast to traditional formulations and solutions to conjugate heat-transfer problems in 
filtration [4-8], the input conditions in the given problem are specified at a moving boundary; 
there is constant increase in volume of the heterogeneous volume and hence in the heat- 
transfer surface. 

The situation in which there is nonsteady heat transfer in a heterogeneous medium with 
motion of one of the boundaries of the filtration region is also realized in various process- 
es in the metallurgical and food industry, chemical technology, geotechnology, etc. There- 
fore, the solution of the problem in a formulation with moving boundary conditions is of 
interest for many applications. 
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Model of heat-transfer problem in heterogeneous medium. 

The gas motion is regarded as one-dimensional filtration in a heterogeneous medium. 
Since the time of bed treatment considerably exceeds the periods of collapse, it is assumed 
that the velocity at which the zone boundary moves is specified and equal to the velocity 
at which the combustion face moves. The heterogeneous medium may be modeled by a system 
of parallel cracks or a layer of spherical elements with equivalent radius R. Boundary 
conditions of type I or III (depending on the ratio of Bi and Nu) are specified at the inter- 
face between the media, and the symmetry condition is imposed at the center of the layer 
(bed) particles. Since the collapse zone is sufficiently large and the surface area of ele- 
ments of this zone is several times greater than the heat-transfer surface with the intact 
rock mass, heat losses in the surrounding medium are disregarded. A possible model of the 
heterogeneous medium and scheme of gas motion is shown in Fig. i. The system of equations 
describing heat transfer in such conditions includes: an equation for the gas phase with 
an internal heat source, the differential heat-conduction equation for solids of the simplest 
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are specified. Here F is a constant: F = O(y-------y) for a plate and F = 2(y~r) for a sphere. 

Converting to a coordinate system associated with the moving boundary, where ~ = x + 
~, ~* = �9 - ~/(u + ~0), Eqs. (1)-(8) may be rewritten in the dimensionless form 

O0 --o'Ot% v=I' (9) 
0X 0Y ' 

8t~ Oz~ F Ot~ 

0 F o *  aY 2 + Y O Y '  ( 1 0 )  

1049 
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TO find the heat flux in Eq. (9), Eq. (i0) must be solved for the corresponding form of the 
elements of the heterogeneous medium. 

For boundary conditions of the first kind 
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where gn is the root of the characteristic equation WF(Dn)VF(Pn ) = ~n/Bi. 

For plates 
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Taking account of these expressions, Eq. (9) with the corresponding conditions in Eqs. 
(13) takes the form 
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where Pn = 2 for boundary conditions of the first kind and 

2 Bi 

P ~ =  p~ +  B i +  ( l - - F )  Bi 
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In [7, 9 ] ,  a method of  s o l v i n g  h e a t - t r a n s f e r  e q u a t i o n s  wi th  f i l t r a t i o n  was proposed  
and t e s t e d .  The b a s i s  of  t h i s  method, t he  e q u i v a l e n t - e q u a t i o n  method, i s  t h a t  t he  mutual  
heat transfer between the liquid and the structural elements of the medium may be described 
by a differential approximation of the Duhamel integral on the right-hand side of Eq. (17). 

The use of the method in heat and mass-transfer theory, as well as more general prob- 
lems of reducing such systems to an equation with one dependent variable, the validity con- 
ditions of the approximation, and the character of the resulting errors, has been investi- 
gated by Buevich et al., for example, in [3, 10-12]. 

This method yields an equation with initial and boundary conditions in which it is taken 
into account that the heat content of the filtration zone is finite and there is no temperature 
variation of the phases at sufficiently large times 
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TABLE i. Coefficients A and B for Calculating the Filtra- 
tional Heat Transfer with Boundary Conditions of the Third 

Kind 

Filtration in parallel-crack system Filtration in layer of spheres 

Bi  A B B i  _4 B 

0,001 
0,01 
0,08 
0,5 
l,O 
10 
40 

100 

1 , 0 0 0  
1 , 0 0 0  
t ,  0 0 0  
1 , 0 0 0  
I ,000 
0,997 
0,984 
0,97I 

964,81 
102,89 
12,85 
2,336 
1,335 
0,433 
0,359 
O, 343 

O, 005 
0,02 
0,08 
0,5 
1,0 
I0 
50 

100 

O, 339 
0,336 
O, 334 
O, 334 
O, 333 
0,331 
0,318 
0,313 

22,770 
5,65i 
[,411 
0,245 
0,133 
0,033 
0,025 
0,024 

Fo*-,- oo, X > 0 ,  0 i. 

The solution of Eqs. (18)-(21) for the temperature distribution takes the form 
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r~=: ] , 

Values  o f  A and B f o r  v a r i o u s  c o n d i t i o n s  a r e  g i v e n  in  T a b l e  i .  

Letting x = 0 and substituting 

into Eq. 
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(22), the gas temperature at the exit from the collapse zone is found: 
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J 

(21) 

(22) 

(23) 

Here k = u/(~AG). 

The local gas velocity u in the collapse zone is due to the mass of gas formed as a 
result of reaction and the geometric parameters of the filtrational collector and conse- 
quently 

XpcHZ~ ~ ~nL~spj. 
(24)  

Hence 

3A,Or%,  h ( I - - ~ ) - "  (25) 

Undoubtedly, the gas formed is not distributed over the whole region of collapse; therefore, 
m d is taken to be the height of the collapse-zone model in which motion in the given techno- 
logical conditions is taken into account using the experimental capture coefficient. The 
parameter k characterizes the ratio of growth rates of the volume specific heats of the two 
phases of the heterogeneous medium and the heat-transfer conditions at their interface. 

Analysis of Eq. (23) permits the estimation of the asymptotic gas temperature on leaving 
the collapse zone as Fo* ~ ~: 

1 ] / ~ .  2, 
(26) 
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Fig. 2. Variation in gas temperature on leaving collapse zone; boundary 
conditions of the first kind: A = 0.302; B = 0.022. ~, h. 

when k < 1, 

when k == 1, 

when /r > 1 
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Using Eq. (23), it is sufficiently simple to determine the space--time distribution of 
the energy-carrier temperature in the system and to obtain the solution for the solid-phase 
temperature [4]. In addition, knowing the combustion temperature and the gas temperature 
at the collector exit (Fig. 2), as well as the flow rate of combustion products (or the 
vapor-gas mixture), the heat losses in this zone may be estimated and, on this basis, the 
mean temperature of the rock may be calculated. This is the initial parameter for calcu- 
lating the temperature field of the heat carrier in the next technological stage: the cre- 
ation of a geothermal circulation system in the collapse zone above the treated coal bed. 

NOTATION 

x, y, r, longitudinal, transverse, and radial coordinates; ~, time; T, gas-phase tem- 
perature; Tin, initial temperature; to, gas temperature at input; u, real gas velocity; m, 
velocity of motion of input-condition boundary; ar, %r, Cr, Pr, thermal diffusivity, thermal 
conductivity, specific heat, and density of solid phase (rock); pg, cg, density and specific 

heat of gas; Pc, density of coal; X, stoichiometric coefficient; E, porosity of layer; o, 
surface area of solid phase per unit volume of gas; md, width of collapse zone; m, width of 
coal bed; ~, heat-transfer coefficient; 0 = (t - Tin)/(t 0 - Tin), dimensionless gas tempera- 

ture; ~ = (T - Tin)/(t0 - Tin), dimensionless solid-phase temperature. Dimensionless com- 

plexes: Y = y/R; X = ~r~/R2(u + w); G = RoPrCr/pgCg; o = (F + i)(i -- E)/Re; Fo = arT/R2; 

Fo* = Fo - X; Bi = ~R/%r; Nu = ~R/Ig. 
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APPROXIMATE APPROACH TO SOLUTION OF THREE-DIMENSIONAL HEAT 

CONDUCTION PROBLEMS 

V. V. Gorskii, A. M. Sigitova, and M. N. Televnyi UDC 536.2 

An approximate approach is presented for the solution of a three-dimensional 
heat conduction problem for one type of heat-protective coating frequently en- 
countered in practice. The method proposed, based on the reduction of the ini- 
tial three-dimensional problem to a set of two problems of less dimensionality, 
makes it possible, with satisfactory precision, to shorten substantially the 
computer time spent in determining thermal conditions of elements of a given 
design. 

Aircraft bodies are, at the present time, in the majority of cases, thin-walled sup- 
porting metallic shells coated on the outside and (or) inside with a many-layered heat 
insulation. Large flight speeds at nonzero angles of attack give rise to high thermal flow 
densities and a resulting nonuniformity in the distribution of these flows over the struc- 
tural surface. Flow-on and flow-off directions, and different nodes of pressure and rare- 
faction at locations shaded by aerodynamic elements, give rise to zones of minimum and peak 
loads on an object. To correctly estimate the thermal state of an aircraft, it is neces- 
sary under these conditions to consider the heat conduction equation in three dimensions. 
A rigorous solution of a similar problem by traditional numerical methods becomes in some 
cases (in carrying-out algorithms in a "real time scale" or in handling large-scale computa- 
tional systems) impractical due to the resulting high expenditure of machine time. In the 
present paper we present one of the possible approaches to solving a nonstationary three- 
dimensional heat conduction problem, an approach which makes it possible, with satisfactory 
precision, to obtain results with substantially less computational time spent in determin- 
ing thermal conditions of elements of a structural object. 

A basic feature of the engineering method presented here is the fact that three-dimen- 
sional calculation of heat conduction of the shell is reduced to a set of two problems: 
two-dimensional initial heating of the supporting framework, with neglect of temperature 
drop over its thickness, and a one-dimensional initial heating of the thermal insulation 
in a direction perpendicular to the surface of the metallic layer. Here a direct calcula- 
tion of the temperature field over the structure is carried out while solving the indicated 
one-dimensional problem using values of a source function in place of the metallic layer 
arrangement. The source function is calculated within the scope of the two-dimensional heat 
conduction problem and is connected with thermal overcurrents in longitudinal and transverse 
directions. In particular, the source function for the case involving calculation of an 
element of an axially-symmetric shell has the following form: 

2r rd~ / "  
The physical justification for use of such an approximate approach is based on a qualitative 
difference in the coefficients of thermal conductivity of elements of the structure of the 
type considered and also on the relatively small thicknesses of the metallic layer. 

Translated from Inzherneno-fizicheskii Zhurnal, Vol. 61, No. 2, pp. 319-322, August, 
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